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Abstract
We present a physical scheme for implementing quantum phase estimation via
weakly coupled double-quantum-dot molecules embedded in a microcavity.
During the same process of implementation, we can also realize the calibration
of a timepiece based on the estimated phase. We use the electron–hole
pair states in coupled double-quantum-dot molecules to encode quantum
information, where the requirement that two quantum dots are exactly identical
is not necessary. Our idea can also be generalized to other systems, such as
atomic, trapped ion and linear optics systems.

1. Introduction

Relative phase plays an important role in quantum information. The encoding of
information into the relative phase of quantum systems has been extensively used in quantum
cryptographic [1], quantum cloning [2], geometric quantum computation [3] and so on.
Phase estimation based on the discrete quantum Fourier transform (QFT) is a comparatively
good method for resolving some phase problems. The phase estimation is a procedure for
measuring a certain unknown phase with high precision, which is also the key ingredient for
resolving some complex quantum algorithms [4–6], e.g. the factoring problem and the order-
finding problem. Therefore quantum phase estimation is a very important tool in quantum
communication and quantum computation.

In order to estimate an unknown phase φ (φ ∈ (0, 2π]), we must use an oracle in the
process because the phase estimation procedure is not a complete quantum algorithm in its
own right. At the same time, the generation of a state |u〉 with an eigenvalue eiφ is necessary.
In addition, we should also find a unitary transformation U , which satisfies

U |u〉 = exp(iφ)|u〉.
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Figure 1. The sketch map for the procedure of phase
estimation.

Controlled unitary transformations C–U 2 j
( j ∈ N

+) will be performed in the process of the
oracle [7]. The main elements of quantum phase estimation are the oracle transformation
and an inverse QFT, the sketch of which is shown in figure 1. The No.1 register contains
m qubits initially prepared in the state |0〉⊗m while the eigenstate |u〉 was encoded into the
No.2 register. The detailed process of phase estimation can be described as follows: firstly,
perform a Hadamard gate operation on each of the m qubits in the No.1 register. Secondly,
apply appropriate C–U 2 j

operations to the whole system with the m qubits in the No.1 register
used as controlled bits while |u〉 is used as a target bit. Then apply an inverse QFT on the qubits
in No.1 register. Finally, measure the output of No.1 register. According to the measurement
result, we can estimate the unknown phase φ � ˜φ. The successful probability and the number
of digits of accuracy we wish to have in the estimation depend on m.

Recently, many researches on phase estimation have been presented including the lower
bound for phase estimation [8], optimal phase estimation for qubits in mixed states [9],
optimal phase measurements with pure Gaussian states [10] and optimal quantum circuits for
general phase estimation [11]. However, the implementation of quantum phase estimation
in physical systems is not a easy task since an unknown phase is involved in the procedure.
To overcome this difficulty, we can introduce a fungible magnitude T into the procedure of
phase estimation. A solid-state system would be the most promising candidate for quantum
computer use considered by scientists. Recently one of the solid-state systems—a quantum
dot system—has attracted much attention because of its intrinsic properties. In the realm of
the quantum dot, electronic charge states [12, 13], single-electron spin states [14, 15], the
spin singlet state and triple states of double electrons [16, 17] can all be used as qubits to
encode quantum information. In particular, schemes combining cavity technology become
very useful for quantum information processing because the cavity mode can be used as a data
bus for long-distance information transfer or long-distance fast coupling between two arbitrary
qubits. In comparison with those on other transmission media, the parallel operations on two
arbitrary different qubits can be more easily realized by using cavity technology. Moreover the
spatial separation of electronic charge states can enhance quantum coherence [18]. Therefore
we investigate the implementation of quantum phase estimation via the interaction between
weakly coupled double-quantum-dot molecules and the microcavity in this paper. Because
we introduce the new fungible magnitude, we can calculate time T in terms of the final
measurement result, which corresponds to the phase ˜φ. Then we can calculate the error
of time comparing with an ideal clock. If the error is within the range of the precision η
(η = ˜φ/φ×100%) of the phase estimation, the error will be neglected; otherwise, the frequency
of the time should be regulated.

2. Implementation of phase estimation and calibration of a timepiece

In this section, we discuss a scenario for implementing quantum phase estimation in detail.
During this process, we also can check a timepiece: whether it is precise or not, by comparing
with an ideal timepiece.
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Figure 2. (a) Configuration of a weakly coupled double-quantum-dot molecule. Two ellipses
present two arbitrary quantum dots, the ground state denoted by |g〉 is used for the qubit logic
state |˜0〉, the excited state |e〉 for logic state |˜1〉, and |i〉 is an intermediate state. ω1 and ω2 are
two frequencies of pulse lasers, and ωc is the frequency of the cavity photon. (b) n quantum
dot molecules are embedded in a microcavity. Assume that the distance between two neighboring
quantum dot molecules is large enough for neglecting Coulomb correlations.

2.1. Interaction between weakly coupled double-quantum-dot molecules with laser fields and
the microcavity

In our scheme, we use electronic charge (electron–hole pair) states to store information; the
configuration diagram of a qubit is shown in figure 2(a). The states |g〉, |e〉 and |i〉 result
from the conduction and valence band states of the two individual quantum dots with different
sizes [12]. All of the quantum dot molecules are embedded in a microcavity. Assume that there
is no intermediate state between the two lowest conduction band states and the highest valence
band state. If we use a pulse laser on a coupled double-quantum-dot molecule with frequency
ω1, the Rabi transition |g〉 ↔ |e〉 can be governed by the following interaction Hamiltonian
(h̄ = 1) [12]:

HI = �1(|e〉〈g|eiφ1 + |g〉〈e|e−iφ1), (1)

where �1 is the Rabi frequency, and φ1 is the laser phase. We can obtain the evolution after a
duration time t

|g〉 → −ie−iφ1 sin(�1t)|g〉 + cos(�1t)|e〉, (2a)

|e〉 → cos(�1t)|g〉 − ieiφ1 sin(�1t)|e〉, (2b)

from which we can realize arbitrary single-qubit transformations by adjusting �1, t and φ1.
If we switch on a pulse laser with frequency ω2 = Ee − Eg −ωc, then the ω2 laser photon

and the ωc cavity photon will participate in a resonant transition |g〉 ↔ |e〉; the interaction
Hamiltonian can be written as [12]

HII = �eff(|e〉〈g|aeiφ2 + |g〉〈e|a†e−iφ2), (3)

where �eff = �c�2/δ; δ = ω2 − (Ei − Eg) is the detuning between the laser frequency and
the energy of transition from |g〉 to |e〉 during this transition; �2 and �c are the strengths
of coupling of |g〉 ↔ |i〉 and |i〉 ↔ |e〉, respectively. There is no occupation of the
intermediate state |i〉 because of the existing large detuning δ. We can obtain the time evolution
corresponding to HII as

|g〉|0〉 → |g〉|0〉, (4a)

|g〉|1〉 → cos(�efft)|g〉|1〉 − ieiφ2 sin(�efft)|e〉|0〉, (4b)

3



J. Phys.: Condens. Matter 19 (2007) 376216 P Dong and Z-L Cao

|e〉|0〉 → cos(�efft)|e〉|0〉 − ie−iφ2 sin(�efft)|g〉|1〉, (4c)

|e〉|1〉 → |e〉|1〉. (4d)

This process of evolution is the essential ingredient for realizing arbitrary two-qubit operations
in this system, such as the controlled-not gate [12] and the controlled phase flip, where the
photonic state (|0〉 or |1〉) is used to mediate the coupling between two arbitrary qubits.

2.2. Implementation of general quantum phase estimation

To implement quantum phase estimation, we prepare two clocks (clock 1 is a precise one; the
frequency of clock 2 is unknown but its scale is well proportioned), a vacuum microcavity mode
state |0〉, and m + 1 coupled double-quantum-dot molecules without excess electrons in their
conduction bands, where m molecules are all initialized in |g〉⊗m = |˜0〉⊗m , and the (m + 1)
th molecule is in |e〉m+1 = |˜1〉m+1. The detailed scenario for implementing general quantum
phase estimation can be described as the following three steps:

(I) Firstly, perform a Hadamard gate operation on each of the quantum dot molecules, from
molecule 1 to molecule m, respectively, which can be realized by an interaction such as that
in equation (1). Here we choose φ1 = 2kπ + π/2 and �1t/h̄ = 2nπ + π/4 (k, n ∈ N).
The time t is detected by clock 1. Then we should perform a controlled phase C–U gate on
quantum dot molecules m and m +1 (molecule m is used as control bit while molecule m +1 is
used as the target bit) by an interaction such as that in equation (3). However, molecule m + 1
remains in the state |˜1〉 at all times, so we only need to operate a single-qubit φ phase gate on
molecule m to achieve the above task (the C–U gate) by using an interaction such as that in
equation (1) by choosing �1t/h̄ = 2nπ + π/2 and φ1 = φ + π/2 (the φ is unknown and can
be controlled by an unknown length l of an electro-optic crystal, so it also can be controlled
by the time T of going through the electro-optic crystal). The time T is detected by clock 2.
Similarly, we perform 2 times φ phase transformations on molecule m − 1, perform 4 times φ
phase transformations on molecule m−2, · · ·, and perform 2m−1 times φ phase transformations
on molecule 1. After that, the state of the total system becomes

|ψ〉 = 1

2m/2
(|˜0〉1 + ei2m−1φ |˜1〉1)(|˜0〉2 + ei2m−2φ |˜1〉2) · · · (|˜0〉m + ei20φ |˜1〉m)|˜1〉m+1

= 1

2m/2

2m−1
∑

k=0

eiφk |k〉. (5)

(II) Setting φ = 2πϕ, assume that ϕ can be expressed exactly in m qubits, so ϕ =
0.ϕ1 · · ·ϕm (ϕi = 0 or 1), where 0.ϕ1 · · ·ϕm = ϕ1/2 + ϕ2/4 + · · · + ϕm/2m . The state of
the quantum dot molecules from molecule 1 to molecule m can be rewritten as

|ψ〉 = 1

2m/2
(|˜0〉1 + e2π i0·ϕm |˜1〉1)(|˜0〉2 + e2π i0·ϕm−1ϕm |˜1〉2) · · · (|˜0〉m + e2π i0·ϕ1···ϕm |˜1〉m). (6)

Then perform an inverse QFT on the No.1 register; the detailed process can be described as
follows. (1) We perform a Hadamard transform on quantum dot molecule 1; the state of
quantum dot molecule 1 becomes |ϕm〉. (2) We perform a series of operations on quantum
dot molecules 1 and 2: we perform a single-qubit −θ (θ = π/4) phase gate operation on
quantum dot molecule 1, a controlled-not gate operation on quantum dot molecules 1 and
2 (molecule 1 is used as a control bit while molecule 2 is used as a target bit), a single-
qubit θ phase gate operation on molecule 2, a controlled-not gate operation on quantum
dot molecules 1 and 2 again, and a single-qubit −θ phase gate operation on molecule
2. These operations on molecules 1 and 2 can be expressed as a total transformation

4



J. Phys.: Condens. Matter 19 (2007) 376216 P Dong and Z-L Cao

U12 = U2(−θ)U12(cnot)U2(θ)U12(cnot)U1(−θ). Then we perform a Hadamard transform on
quantum dot molecule 2. The state of quantum dot molecule 2 becomes |ϕm−1〉. (3) Similarly,
we apply the transformation U13 on molecules 1 and 3 with θ = π/8, and the transformation
U23 on molecules 2 and 3 with θ = π/4 as in step (2). Then we perform a Hadamard transform
on quantum dot molecule 3. The state of quantum dot molecule 2 becomes |ϕm−2〉; · · ·. (m)
We apply the transformation U1m on molecules 1 and m with θ = π/2m−2, the transformation
U2m on molecules 2 and m with θ = π/2m−3, · · ·, and the transformation Um−1,m on molecules
m − 1 and m with θ = π/4 as in step (2). Finally, we perform a Hadamard transformation on
quantum dot molecule m. The state of quantum dot molecule m becomes |ϕ1〉.

(III) We detect the quantum dot molecules 1, 2, · · ·, m using detectors, and read out
the result in reverse order. The measurement result is |ϕmϕm−1 · · ·ϕ1〉, but the readout is
|ϕ1ϕ2 · · ·ϕm〉, so the estimated phase is ˜φ = φ = 2π0.ϕ1 · · ·ϕm , which is precise.

2.3. Remarks on phase estimation and calibration of the timepiece

In the above process, we have assumed that ϕ can be expressed exactly in κ = m qubits, but
it is only an ideal case. For an arbitrary value of ϕ, and κ < m, if we wish to approximate ϕ
up to an accuracy of 1/2n, then the successful probability should be about 1 − 1/(2m−n+1 − 4)
with m � n + 1. The unknown phase ϕ can be created by modulating the length l = vT
of an electro-optic crystal (such as a KDP crystal), so we can estimate the time T in terms
of φ1 = 2πϕ + π/2 = �n3

0vr63 ET/2c = �n2
0nr63 ET/2, where � is the frequency of an

electric field, r63 is an electro-optic tensor, v is the velocity of a laser through the electro-optic
crystal, and n and n0 are refractive rates for the vacuum and electro-optic crystal, respectively.
In the process of implementing phase estimation, the time T is detected by clock 2; if clock 2
undergoes h scales of a total of O scales, we can calculate the total time from Ttotal = OT/h
around a circle in clock 2. In the ideal case, we compare the Ttotal with the time Ti , which is the
total time around a circle in an ideal clock. If Ttotal = Ti , clock 2 is an accurate one; otherwise,
the frequency of clock 2 should be regulated. In the general case, we should first determinate
the error of the phase η = ˜φ/φ × 100%; then we can calculate the error η′ = Ttotal/Ti × 100%
of clock 2. If η′ � η, we can treat clock 2 as an accurate one; otherwise, the frequency of clock
2 has to be regulated. In the case of Ttotal < Ti , the frequency of clock 2 should be increased;
otherwise, the frequency should be decreased. In summary, calibration of a timepiece includes
two aspects: one is checking whether the clock 2 is precise or not; the other is that if the clock 2
is not precise, we will regulate the frequency of clock 2 according to the error of the estimated
phase. Similarly, we also can estimate the length l of an electro-optic crystal on the basis of the
procedure of quantum phase estimation.

3. Discussion and conclusions

We discuss the feasibility of the current scheme with experimental parameters reported in
current experiments. For general weakly coupled double-quantum-dot molecules, the strength
of coupling t between |e〉 and |i〉 is about 0.01 meV, and the energy difference  = Ee − Ei

is about 10 meV; thus the spatial separation factor γ = t2/(2 + t2) � 10−6 [12]. In
our scheme, we use two laser pulses with different coupling strengths �1, �2, which will
satisfy the condition �1 ∼ 10−3�2 according to the above value of γ . For the process of the
interaction involving two photons, the strength of the coupling �c caused by the cavity field
is 300 MHz [13, 15], where we have assumed that �2 = 0.1 meV and δ = 1 meV as done
in [12], resulting in�eff = �2�c/δ � 30 kHz and�1 � 10−4 meV. Therefore completion of a
single-qubit operation and a two-qubit operation will cost about several hundred nanoseconds
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and 10−4 s, respectively. We can calculate the total time for completing the current scheme,
which is about T = n(n − 1)/2 × 10−4 s. The coherent time of the spatial separate charge
qubits can reach tens of seconds [18] (we can assume Tc = 10 s). Comparing the time T with
Tc, it is shown that the number of qubits will be n � 450 � 100 if T = Tc, so our scheme is
suitable for large-scale quantum computation in quantum dot systems.

In conclusion, we present a scenario for implementing general quantum phase estimation
via weakly coupled double-quantum-dot molecules embedded in a microcavity. The two
quantum dots involved are not necessarily exactly identical, which reduces the experimental
difficulty. In the same process of our implementation of quantum phase estimation, we can
also realize the calibration of a timepiece or estimation of length. The key ingredient for our
scheme is implementing the C–U transformation and the reversed QFT. In addition, the error
of the time (length) can be calculated using the fidelity of the quantum phase. In other words,
an arbitrary classical quantity related to the estimated quantum phase can be estimated by the
same method. These classical estimation results (time T , length l, etc) are useful for our lives.
The phase estimation would also be an important step for fabricating a quantum computer since
it is the key ingredient for complex quantum algorithms. It also deserves note that our idea can
be generalized to other systems, such as atom systems, trapped ion systems and linear optic
systems.
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